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Abstract: Re(pyNHC-PhCE)(CO);Br is a highly active photocatalyst for C@reduction. The PhCE
derivative was previously empirically shown to be a robust catalystHere, the role of the PhCE
group is probed computationally and the robust nature of this catalyst is analyzed with regard to the
presence of water and oxygen introduced in controlled amounts during the photocatalytic reduction
of CO, to CO with visible light. This complex was found to work well from 0-1% water concentration
reproducibly;however, trace amounts of water were required for benchmark Re(bpy)(CQ)Cl to
give reproducible reactivity. When ambient air is added to the reaction mixture, the NHC complex
was found to retain substantial performance (~50% of optimized reactivity) at up to 40% ambient
atmosphere and 60% CO, while the Re(bpy)(CO)Cl complex was found to give a dramatically
reduced CO, reduction reactivity upon introduction of ambient atmosphereThrough the use of
time-correlated single photon counting studies and prior electrochemical results, we reasoned that
this enhanced catalyst resilience is due to a mechanistic difference between the NHC- and bpy-based
catalysts. These results highlight an important feature of this NHC-ligated catalys$ubstantially
enhanced stability toward common reaction contaminates.
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1. Introduction

The photocatalytic transformation of CQ into a useful fuel is one of humanity’s paramount
challenges [[-4]. Driving this process with widely abundant sunlight is highly desirable. The use of a
catalyst to drive the multi-electron reduction of C@is needed as the direct one-electron reduction is
energetically inhibitive,6]. Thus, catalysts that can absorb sunlight and deliver multiple electrons
simultaneously are in high demand for addressing two key challenges. Despite more than 30 years
of exploration, very few catalysts meet these criteria with a single metal center, and nearly all of
them are based on one of five frameworks: Fe-p-TMA, Ir(tpy)(ppy) X, Ir(tpy) (bpy) X, Re(bpy)(CGQX,
or Re(pyNHC-R)(CO);X (Figure 1) [7-12]. Among these catalysts, the Re(pyNHC-R)(CO}X catalyst is
unique in allowing the reduction of C@to occur at the first reduction potential of the neutral catalyst
(Figure 2) [10,13]. Typically, CQ reduction photocatalysts first undergo photoexcitation followed by
electron transfer from a sacrificial electron donor (SED) to give the anionic catalyst (Figure 2a). An SED
is used in place of a complete photoelectrochemical system to reduce complexity and allow for the
study of a single catalyst. The anionic complex then receives a second electron ultimately from a SED.
The catalyst can then reduce CQ to a lower-oxidation-state carbon-based product such as CO and
regenerate the initial neutral catalyst. Alternatively, after the first reduction sequence, the catalyst can
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can then reduce CO2 to a lower-oxidation-state carbon-based product such as CO and regenerate the
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when the neutral catalyst is compared with the singly reduced catalyst. The remaining Re-ligand
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facile electron transfer event. This suggests that a dramatically larger amount of reduced
Re(bpy)(CO) sBr is present in solution relative to reduced Re(pyNHC-PhCF 3)(CO)sBr due to both a
shorter excited-state lifetime for the NHC catalyst and a smaller AG for the electron transfer from BIH
to the NHC catalyst. However, it is important to recall that the Re(pyNHC-PhCF  3)(CO)sBr catalyst
reacts CO: after a single electron transfer, which means that a CO: reactive species is being generated
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a more facile electron transfer event. This suggests that a dramatically larger amount of reduced
Re(bpy)(CO)Br is present in solution relative to reduced Re(pyNHC-PhGRCO);Br due to both a
shorter excited-state lifetime for the NHC catalyst and a smalleAG for the electron transfer from
BIH to the NHC catalyst. However, it is important to recall that the Re(pyNHC-PhCF3)(CO);Br
catalyst reacts CO, after a single electron transfer, which means that a CQreactive species is being
generated after a single photoexcitation and SED electron transfer. The reduced Re(bpy)(CO)Br
catalyst likely undergoes a second electron transfer event before CO release. The relative concentration
of the species being reduced is difficult to predict, although the singly reduced Re(bpy)(CO)Br
will be lower in concentration than neutral Re(pyNHC-PhCH(CO);Br, both of which require one
electron transfer to become reactive toward C@and produce CO. Thus, the higher reactivity of the
Re(pyNHC-PhCF;)(CO);3Br catalyst (relative to Re(bpy)(CO}Br) toward photocatalytic CO, reduction
could be due to a higher concentration of CQreactive species in solution or due to a more reactive
catalyst or both.

2.3. Catalyst Sensitivity: Water Concentration

We reasoned that the differences in mechanisms could lead to an NHC-ligated catalyst that is more
robust to water and Q. Initial anhydrous, Q free experiments reveal a closer match in TON values
for the Re(bpy)(CO}Cl and Re(pyNHC-PhCE)(CO);Cl complexes (2-3 TON difference) than the Br
derivatives (~15 TON difference). Thus, the Cl complexes were examined toward water and oxygen
sensitivity from a common TON starting point. Both Re(pyNHC-PhGH(CO);Cl and Re(bpy)(CO}Cl
are stable to ambient air and moisture for prolonged periods with no noticeable loss of reactivity
provided that light exposure is avoided. However, the anionic catalysts are presumably much more
reactive toward water and oxygen. As a key difference in these catalysts, though, Re(bpy)(CQYX1
must access a doubly reduced species to be competent toward COreduction. Thus, the stability of
both the first and second reduced catalyst species related to Re(bpy)(CQX1 toward water and oxygen
must be considered, while only the Re(pyNHC-PhCHH(CO);Cl anion needs to be considered due to
the NHC ligand. This led us to hypothesize that the NHC catalyst would be more resilient to these
common contaminates.

To probe this hypothesis, we compared the head-to-head photocatalytic reduction of €€actions
with Re(pyNHC-PhCE)(CO);Cl and Re(bpy)(CO}Cl with controlled addition of water or ambient
atmosphere to the reaction. We monitored the changes in rates of reactivity (turnover frequency, TOF)
and the overall durability of the catalysts (turnover number, TON) for these comparisons. Concerning
water, seven low-reaction solvent volume ratios were analyzed starting from dried and distilled
anhydrous MeCN up to 3.2% water concentration. For the benchmark Re(bpy)(CO)Cl complex,
strictly anhydrous conditions show a relatively low TON value (26) compared to the highest TON
value of 72 with the addition of 0.05% water volume (Figure 5). This represents at least a 64% loss in
reactivity relative to peak performance.

Interestingly,a near trace amount of water is needed to observe high reactivity with the
Re(bpy)(CO)Cl catalyst, but addition of water beyond 0.05% leads to a slight decrease in durability
up to 0.80% volume water before a large drop in reactivity is observedIt should be noted that the
anhydrous TON value is reported as an average of several experiments with a very large variability
in TON values between 62 and 4 TON (Figure 5c). We suspect that this catalyst requires a very small
amount of water to perform the photocatalytic reduction of CQ and that the variability is due to trace
amounts of adventitious water entering our reactions despite our attempts to run these reactions under
strictly anhydrous conditions.

The Re(pyNHC-PhCE)(CO);Cl complex shows a similar trend with the anhydrous conditions
giving about 20 TON and the peak catalyst performances observed with 0.20% water volume (35 TON,
Figure 5b). While water does enhance the reactivity of Re(pyNHC-PhGF(CO)3Cl, the loss of reactivity
(43%) under anhydrous conditions is much less than that of Re(bpy)(CO}Cl. Again, addition of
larger amounts of water (up to 3.2%) shows a dramatic loss in catalyst reactivity. Interestingly,
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the variation in catalyst performance of about +/ — 5 TON under anhydrous conditions with
Re(pyNHC-PhCE)(CO);Cl is no larger than under peak performance conditions and compares
favorably to the +/— 30 TON observed for Re(bpy)(COJCl under anhydrous conditions (Figure 5d).
This observation helps to explain the wide range of TON values observed with Lehn’s catalyst
(Re(bpy)(CO)CI) from various research groups under “anhydrous” conditions, since even rigorously
anhydrous experisnental kechnique results are substantially variable.
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erences 1n reactive anions present for the two catalysts, as descrlbed above e TOF of these
reactions was analyzed at the earliest time point to see the maximal TOF value under each air
percentage. Re(pyNHC-PhCF3)(CO)sCl is fastest with no air present (35 TON/h) while the
Re(bpy)(CO)3Cl catalyst is significantly slower at 16 TON/h (Figure 7). The Re(bpy)(CO) 3Cl catalyst
gradually loses its initial TOF rate as more air is added. Surprisingly, after an initial loss of TOF as
air increases, Re(pyNHC-PhCEF 3)(CO)sCl shows an increase in TOF at air concentrations of 20% or
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stability of Re(pyNHC-PhCE)(CO);Cl to O,, which is potentially due to the mechanistic differences
in reactive anions present for the two catalysts, as described above. The TOF of these reactions
was analyzed at the earliest time point to see the maximal TOF value under each air percentage.
Re(pyNHC-PhCE)(CO);Cl is fastest with no air present (35 TON/h) while the Re(bpy)(CO) ;C1
catalyst is significantly slower at 16 TON/h (Figure 7). The Re(bpy)(CQXIl catalyst gradually loses
its initial TOF rate as more air is added. Surprisingly,after an initial loss of TOF as air increases,
Re(pyNHC-PhCE)(CO);Cl shows an increase in TOF at air concentrations of 20% or more. This effect
is even more dramatic if the TOF is normalized to the percent of C(present in the reaction vessel.
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the tremendously shortened excited state. Concerning common contaminates,added water was
found to be critical for reproducible reactivity with Re(bpy)(C@C1 while Re(pyNHC-PhCE)(CO);Cl
was significantly less sensitive to anhydrous conditions. Both catalysts show substantially reduced
reactivity when water reached ~1% of the solvent volume. With regard to reduced ¢@ncentration
with O, incorporation from ambient atmosphere as the makeup gas, Re(pyNHC-Phg¥CO);Cl was
found to be significantly less sensitive than Re(bpy)(C€¥Jl as ambient atmosphere concentrations
increased. Interestingly, Re(pyNHC-PhCP(CO);Cl was found to have a similar turnover frequency
at 0% ambient atmosphere (100% CO5) as at 40% ambient atmosphere once the amount of CO ,
was normalized. Future studies will focus on the examination of NHC ligand designs to find a
more durable catalyst given the unique properties of NHC-ligated complexes in photocatalytic GO
reduction reactions. Additionally, we plan to evaluate new metal centers with future ligand designs as
the combined role that the ligand and metal center play in COreduction is likely important but not
fully understood.

3. Experimental Section

3.1. Computational Details

Density functional theory (DFT) was used to compute the optimized structures and harmonic
vibrational frequencies for both the neutral (18 ¢) and anionic (19 ¢ 7) systems. The M06-L [31]
functional was employed for these computations. The density fitting approximation was employed
with M06-L using the default auxiliary basis sets in the Gaussian 09 (Rev: E.01) software packayd.[
The Hay-Wadt relativistic effective core potential and LANLO08(f) uncontracted trigflealence basis
set was initially used for the Re atom33] in conjunction with the 6-31++G(d, p) doublé& split-valence
basis set [34,35] for all other atoms, which has been used elsewhere to successfully characterize similar
rhenium complexes 6,37]. All computations employed a pruned numerical integration grid with
99 radial shells and 590 angular points per shell and the default threshold 0110~ for removing
linearly dependent basis functionsOrbital images were prepared with Avogadro 1.0.3 with an iso
value of 0.25.

3.2. Electron Lifetime Measurement Information

All sample concentrations were on the order of 10° M to reduce reabsorption.Luminescence
lifetimes were obtained by exciting with the 485 nm line of a pulsed diode laser (fwhm < 100 ps)
and detecting with a PicoQuant PDM series single photon avalanche diode (Micro Photon Devices,
Bolzano, Italy).

3.3. Photocatalysis General Information

Prior to experimentation, glassware was flame-dried under vacuum, then kept under nitrogen
pressure. MeCN was dried for 24 h over calcium hydride, distilled with the first and last 20% of the
solvent discarded, and stored under nitrogen with dry 3 A molecular sieves prior to being used as the
solvent source. Solvent, triethylamine, and catalyst solutions were added via dry, nitrogen-flushed
syringes. Photosensitizer solutions were prepared in flame-dried 10 mL round-bottom flasks. BIH was
added under positive nitrogen pressure.

Irradiation for photocatalytic experiments was performed with a 150W Sciencetech SF-150C
Small Collimated Beam Solar Simulator equipped with an AM1.5 filter (Sciencetech, London, ON,
Canada). Headspace analysis was performed using a gastight syringe with stopcock and Agilent
7890B Gas Chromatograph (column, Agilent PorapakQ 6 ft, 1/8 OD) (Agilent, Santa Clara, CA, USA).
Quantitations of CO and CH, were made using an FID, while H was quantified using a TCD (all
calibrated using standards purchased from BuyCalGas.com) (Cross Company, Greensboro, NC, USA).
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3.4. Water-Control Photocatalysis Procedure

To a flame-dried 17 mL flask were added BIH (0.005g, 0.02 mmol), dry MeCN (1.8 mL),
and catalyst (0.2 mL of a1 X 1073 M in dry MeCN solution). H,O was added via a microsyringe.
The solution was then bubbled vigorously for at least 15 min, until the total volume reached
1.9 mL. At that time, degassed, dry triethylamine (0.1 mL) was added to the sealed flask by syringe.
The samples were then irradiated with a solar simulator (150 W Xe lamp, AM1.5 filter).

3.5. Oxygen Control Photocatalysis Procedure

To a flame-dried 17 mL flask were added BIH (0.005 g, 0.02 mmol), dry MeCN (1.8 mL), and catalyst
(0.2mL of a1X 1073 M in dry MeCN solution)A quantity of 4uL of H,O (0.2% v/v) was added via
a 10 UL microsyringe. The solution was then bubbled vigorously for at least 15 min, until the total
volume reached 1.9 mL. At that time, degassed, dry triethylamine (0.1 mL) was added to the sealed flask
by syringe. Using a gastight syringe with stopcock, G@as removed and replaced with a % v/v ambient
atmosphere. The samples were then irradiated with a solar simulator (150 W Xe lamp, AM1.5 filter).

Supplementary Materials: Supplementary materials can be found at www.mdpi.com/2304-6740/6/1/22/s1:
Cartesian coordinates for the geometry optimizations of Re(pyNHC-PhGF(CO);Br as both the neutral and
anionic complex.
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